导出torchscript模型核心代码modnet示例可能的错误构建C++程序安装libtorch安装opencvCMakeLists.txtexp.cpp命令Windows上配置环境配置CMakeLists.txtc++
导出torchscript模型
核心代码
model = Net() model.to(device) model.eval() scripted_model = torch.jit.script(model) torch.jit.save(scripted_model, output_path)
modnet示例
""" Export TorchScript model of MODNet Arguments: --ckpt-path: path of the checkpoint that will be converted --output-path: path for saving the TorchScript model Example: python export_torchscript.py \\ --ckpt-path=modnet_photographic_portrait_matting.ckpt \\ --output-path=modnet_photographic_portrait_matting.torchscript """ import os import argparse import torch import torch.nn as nn import torch.nn.functional as F from . import modnet_torchscript if __name__ == '__main__': # define cmd arguments parser = argparse.ArgumentParser() parser.add_argument('--ckpt-path', type=str, required=True, help='path of the checkpoint that will be converted') parser.add_argument('--output-path', type=str, required=True, help='path for saving the TorchScript model') args = parser.parse_args() # check input arguments if not os.path.exists(args.ckpt_path): print(args.ckpt_path) print('Cannot find checkpoint path: {0}'.format(args.ckpt_path)) exit() # create MODNet and load the pre-trained ckpt modnet = modnet_torchscript.MODNet(backbone_pretrained=False) #modnet = nn.DataParallel(modnet).cuda() #state_dict = torch.load(args.ckpt_path) #modnet.load_state_dict(state_dict) state_dict = torch.load(args.ckpt_path, map_location='cpu') from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove module. new_state_dict[name] = v modnet.load_state_dict(new_state_dict) modnet.to('cpu') modnet.eval() # export to TorchScript model scripted_model = torch.jit.script(modnet) torch.jit.save(scripted_model, os.path.join(args.output_path))
可能的错误
- torchscript对网络模型定义文件的写法要求非常严格,可能报不能用下标访问module,不能用lambda表达式等等的错误,这时候要么换一种方式写网络定义的语句,要么升级一下torch版本,高版本的对语法更宽容
- 导出分CPU、GPU版本,需要注意
构建C++程序
安装libtorch
- 只需要到官网下载适配linux c++版本的libtorch,具体版本可以修改下载地址的一些关键字符,解压之后即可用
安装opencv
- 具体见Linux opencv安装方法的笔记,opencv官网上也有具体步骤
CMakeLists.txt
cmake_minimum_required(VERSION 3.0 FATAL_ERROR) #cmake版本要求 project(exp) #exp代表项目名 SET(CMAKE_C_COMPILER g++) #设定编译器 add_definitions(--std=c++14) # 定义c++标准 #注意自己的c++版本, 根据电脑配置定,也可能是-std=c++11 # 指定libTorch位置 这样不用在cmake指令后面写prefix set(Torch_DIR /home/cz/workspace/libtorch/share/cmake/Torch) find_package(Torch REQUIRED) #自动地在Torch_DIR里找相关依赖 # 打印一下Torch的相关变量,看是否正确读入 message(STATUS "Torch library status:") message(STATUS " version: ${TORCH_VERSION}") message(STATUS " libraries: ${TORCH_LIBS}") message(STATUS " include path: ${TORCH_INCLUDE_DIRS}") message(STATUS " torch lib : ${TORCH_LIBRARIES} ") # 需确保安装好OpenCV find_package(OpenCV REQUIRED) #这里没有SET opencv的lib路径是因为opencv是已经写到环境变量里面去了 message(STATUS "OpenCV library status:") message(STATUS " version: ${OpenCV_VERSION}") message(STATUS " libraries: ${OpenCV_LIBS}") message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}") message(STATUS " torch lib : ${TORCH_LIBRARIES} ") # 包含头文件include # include_directories(${OpenCV_INCLUDE_DIRS} ${TORCH_INCLUDE_DIRS}) add_executable(exp matting.cpp) # 编译后的可执行文件是exp target_link_libraries(exp ${TORCH_LIBRARIES} ${OpenCV_LIBS}) # 链接
exp.cpp
#include <iostream> #include "torch/script.h" #include "torch/torch.h" #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgcodecs.hpp" #include <vector> #include <chrono> #include <string> #include <vector> using namespace cv; using namespace std; torch::Tensor process( cv::Mat& image, torch::Device device, int img_W, int img_H) { vector <float> mean_ = {0.5, 0.5, 0.5}; #均值 vector <float> std_ = {0.5, 0.5, 0.5}; #方差 cv::cvtColor(image, image, cv::COLOR_BGR2RGB);// bgr -> rgb cv::Mat img_float; // image.convertTo(img_float, CV_32F, 1.0 / 255);//归一化到[0,1]区间, cv::resize(image, img_float, cv::Size(img_W, img_H)); # resize std::vector<int64_t> dims = {1, img_H, img_W, 3}; #从Mat torch::Tensor img_var = torch::from_blob(img_float.data, dims, torch::kByte).to(device);//将图像矩阵转化成指定维度张量 img_var = img_var.permute({0,3,1,2});//将张量的参数顺序转化为 torch输入的格式 NCHW img_var = img_var.toType(torch::kFloat); //转换浮点数类型 img_var = img_var.div(255); // 收缩到0-1 //对各通道做归一化操作 for (int i = 0; i < 3; i++) { img_var[0][i] = img_var[0][i].sub_(mean_[i]).div_(std_[i]); } //关闭自动微分 img_var = torch::autograd::make_variable(img_var, false); return img_var; } int main(){ string img_path = "../person.jpg"; //测试图片路径 string model_path = "../model.pt"; //torchscript模型路径 int img_W = 640; int img_H = 480; //加载模型到CPU torch::DeviceType device_type; device_type = torch::kCPU; torch::Device device(device_type); torch::jit::script::Module module = torch::jit::load(model_path);// module.to(torch::kCPU); module.eval(); std::cout<<"Model loading complete"<<std::endl; // 读取图片 cv::Mat image = cv::imread(img_path, cv::ImreadModes::IMREAD_COLOR); if (image.empty()) std::cout<<"Can not load image!"<<std::endl; // 预处理 转tensor torch::Tensor img_var = process(image, device, img_W, img_H); //forward 一般是以一个vector<tensor>传进去 torch::Tensor result = module.forward({img_var}).toTensor(); std::cout<<"Inference complete!"<<std::endl; //后处理 result = result.squeeze();//结果是(1, 1, H, W)删除1的维度 result = result.mul(255).to(torch::kU8) ; //把alpha转到0-255 cv::Mat pts_mat(cv::Size(img_W, img_H), CV_8U, result.data_ptr()); // tensor转Mat cv::imwrite("../matting_person.png", pts_mat); //存图 std::cout<<"matting complete!"<<std::endl; return 0; }
命令
mkdir build cd build cmake .. make
Windows上配置
环境配置
- cmake安装,bin目录配置环境变量
- libtorch下载对应版本,libtorch\lib配置环境变量,因为运行时需要torch_cpu.dll等动态链接库,或者将这些dll拷贝到build后的工程目录
- opencv安装,build\x64\vc14\bin build\x64\vc15\bin配置环境变量
CMakeLists.txt
- 与linux上大同小异,不同的是它会忽略掉一些语句比如C14、编译器选项等,默认采用系统带的MVC编译器
cmake_minimum_required(VERSION 3.0 FATAL_ERROR) project(exp) #exp代表项目名 SET(CMAKE_C_COMPILER g++) add_definitions(--std=c++14) #这两条语句被忽略了 # 指定libTorch位置 set(Torch_DIR C:/Users/cz/Desktop/libtorch-win-shared-with-deps-1.6.0+cpu/libtorch/share/cmake/Torch) find_package(Torch REQUIRED) message(STATUS "Torch library status:") message(STATUS " version: ${TORCH_VERSION}") message(STATUS " libraries: ${TORCH_LIBS}") message(STATUS " include path: ${TORCH_INCLUDE_DIRS}") message(STATUS " torch lib : ${TORCH_LIBRARIES} ") # 需确保安装好OpenCV set(OpenCV_DIR E:/opencv-3.4.8/opencv/build) find_package(OpenCV REQUIRED) message(STATUS "OpenCV library status:") message(STATUS " version: ${OpenCV_VERSION}") message(STATUS " libraries: ${OpenCV_LIBS}") message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}") message(STATUS " torch lib : ${TORCH_LIBRARIES} ") # 包含头文件include # include_directories(${OpenCV_INCLUDE_DIRS} ${TORCH_INCLUDE_DIRS}) add_executable(exp matting.cpp) target_link_libraries(exp ${TORCH_LIBRARIES} ${OpenCV_LIBS})
c++
#include <iostream> #include "torch/script.h" #include "torch/torch.h" #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgcodecs.hpp" #include <vector> #include <chrono> #include <string> #include <vector> #include <time.h> //using namespace cv; //using namespace std; torch::Tensor process( cv::Mat& image, torch::Device device, int img_W, int img_H) { std::vector <float> mean_ = {0.5, 0.5, 0.5}; std::vector <float> std_ = {0.5, 0.5, 0.5}; cv::cvtColor(image, image, cv::COLOR_BGR2RGB);// bgr -> rgb cv::Mat img_float; // image.convertTo(img_float, CV_32F, 1.0 / 255);//归一化到[0,1]区间, cv::resize(image, img_float, cv::Size(img_W, img_H)); std::vector<int64_t> dims = {1, img_H, img_W, 3}; torch::Tensor img_var = torch::from_blob(img_float.data, dims, torch::kByte).to(device);//将图像转化成张量 img_var = img_var.permute({0,3,1,2});//将张量的参数顺序转化为 torch输入的格式 NCHW img_var = img_var.toType(torch::kFloat); img_var = img_var.div(255); for (int i = 0; i < 3; i++) { img_var[0][i] = img_var[0][i].sub_(mean_[i]).div_(std_[i]); } img_var = torch::autograd::make_variable(img_var, false); return img_var; } int main(){ std::string img_path = "../person.jpg"; std::string model_path = "../model.pt"; int img_W = 640; int img_H = 480; //加载模型到CPU clock_t t1 = clock(); torch::DeviceType device_type; device_type = torch::kCPU; torch::Device device(device_type); torch::jit::script::Module module = torch::jit::load(model_path);// module.to(torch::kCPU); module.eval(); std::cout<<"Model loading complete"<<std::endl; clock_t t2 = clock(); std::cout << " loading model time: " << (t2 - t1) * 1.0 / CLOCKS_PER_SEC * 1000 << std::endl; int cnt = 0; int sum = 0; while(cnt < 10) { clock_t t2 = clock(); std::string img_path = "../person" + std::to_string(cnt) + ".jpg"; std::cout<<img_path<<std::endl; cv::Mat image = cv::imread(img_path, cv::ImreadModes::IMREAD_COLOR); if (image.empty()) std::cout<<"Can not load image!"<<std::endl; torch::Tensor img_var = process(image, device, img_W, img_H); clock_t t3 = clock(); //forward torch::Tensor result = module.forward({img_var}).toTensor(); clock_t t4 = clock(); result = result.squeeze();//删除1的维度 result = result.mul(255).to(torch::kU8) ; cv::Mat pts_mat(cv::Size(img_W, img_H), CV_8U, result.data_ptr()); std::string dst = "../matting_person" + std::to_string(cnt) + ".jpg"; cv::imwrite(dst, pts_mat); std::cout<<"matting complete!"<<std::endl; clock_t t5 = clock(); std::cout << " image pre process time: " <<(t3 - t2) * 1.0 / CLOCKS_PER_SEC * 1000 << std::endl; std::cout << " inference time: " << (t4 - t3) * 1.0 / CLOCKS_PER_SEC * 1000 << std::endl; std::cout << " image pre process time: " <<(t5 - t4) * 1.0 / CLOCKS_PER_SEC * 1000 << std::endl; std::cout << " total time: " << (t5- t2) * 1.0 / CLOCKS_PER_SEC * 1000 << std::endl; if(cnt > 0) sum += (t5- t2) * 1.0 / CLOCKS_PER_SEC * 1000; cnt++; } std::cout<<sum / 9.0<<std::endl; //第一帧由于加载的原因速度很慢不算在内 getchar(); return 0; }